Cwww3's Blog

Record what you think

0%

MySql锁

数据库锁设计的初衷是处理并发问题。

根据加锁的范围,MySQL 里面的锁大致可以分成全局锁表级锁行锁三类。

全局锁

全局锁就是对整个数据库实例加锁。MySQL 提供了一个加全局读锁的方法,命令是 Flush tables with read lock (FTWRL)。

其他线程的以下语句会被阻塞:数据更新语句(数据的增删改)、数据定义语句(包括建表、修改表结构等)和更新类事务的提交语句。

全局锁的典型使用场景是,做全库逻辑备份。但是让整库都只读,听上去就很危险:

  • 如果你在主库上备份,那么在备份期间都不能执行更新,业务基本上就得停摆;
  • 如果你在从库上备份,那么备份期间从库不能执行主库同步过来的 binlog,会导致主从延迟。

不加锁的话,备份系统备份的得到的库不是一个逻辑时间点,这个视图是逻辑不一致的。

说到视图,其实是有一个方法能够拿到一致性视图的,在可重复读隔离级别下开启一个事务。

官方自带的逻辑备份工具是 mysqldump。当 mysqldump 使用参数–single-transaction 的时候,导数据之前就会启动一个事务,来确保拿到一致性视图。而由于 MVCC 的支持,这个过程中数据是可以正常更新的。

有了这个功能,为什么还需要 FTWRL 呢?一致性读是好,但前提是引擎要支持这个隔离级别。

既然要全库只读,为什么不使用 set global readonly=true 的方式呢? 两个原因:

  • 一是,在有些系统中,readonly 的值会被用来做其他逻辑,比如用来区分是主库和备库
  • 二是,在异常处理机制上有差异。如果执行 FTWRL 命令之后由于客户端发生异常断开,那么 MySQL 会自动释放这个全局锁,整个库回到可以正常更新的状态。而将整个库设置为 readonly 之后,如果客户端发生异常,则数据库就会一直保持 readonly 状态,这样会导致整个库长时间处于不可写状态,风险较高。

表级锁

MySQL 里面表级别的锁有两种:一种是表锁,一种是元数据锁(meta data lock,MDL)。

表锁的语法是 lock tables … read/write。与 FTWRL 类似,可以用 unlock tables 主动释放锁,也可以在客户端断开的时候自动释放。

需要注意,lock tables 语法除了会限制别的线程的读写外,也限定了本线程接下来的操作对象。

举个例子, 如果在某个线程 A 中执行 lock tables t1 read, t2 write; 这个语句,则其他线程写 t1、读写 t2 的语句都会被阻塞。

同时,线程 A 在执行unlock tables之前,也只能执行读 t1、读写 t2 的操作。连写 t1 都不允许,自然也不能访问其他表。

在还没有出现更细粒度的锁的时候,表锁是最常用的处理并发的方式。

而对于 InnoDB 这种支持行锁的引擎,一般不使用 lock tables 命令来控制并发,毕竟锁住整个表的影响面还是太大。

另一类表级的锁是 MDL(metadata lock)。MDL 不需要显式使用,在访问一个表的时候会被自动加上

MDL 的作用是,保证读写的正确性。想象一下,如果一个查询正在遍历一个表中的数据,而执行期间另一个线程对这个表结构做变更,删了一列,那么查询线程拿到的结果跟表结构对不上,肯定是不行的。

因此,在 MySQL 5.5 版本中引入了 MDL,当对一个表做增删改查操作的时候,加 MDL 读锁;当要对表做结构变更操作的时候,加 MDL 写锁

  • 读锁之间不互斥,因此你可以有多个线程同时对一张表增删改查。
  • 读写锁之间、写锁之间是互斥的,用来保证变更表结构操作的安全性。因此,如果有两个线程要同时给一个表加字段,其中一个要等另一个执行完才能开始执行。

虽然 MDL 锁是系统默认会加的,但却是你不能忽略的一个机制。

给一个表加字段,或者修改字段,或者加索引,需要扫描全表的数据。即使是小表,操作不慎也会出问题。

假设表 t 是一个小表。(MySql5.6)

image-20210428234401353

可以看到 session A 先启动,这时候会对表 t 加一个 MDL 读锁。由于 session B 需要的也是 MDL 读锁,因此可以正常执行。

之后 session C 会被 blocked,是因为 session A 的 MDL 读锁还没有释放,而 session C 需要 MDL 写锁,因此只能被阻塞。

如果只有 session C 自己被阻塞还没什么关系,但是之后所有要在表 t 上新申请 MDL 读锁的请求也会被 session C 阻塞

申请MDL锁的操作会形成一个队列,队列中写锁获取优先级高于读锁。一旦出现写锁等待,不但当前操作会被阻塞,同时还会阻塞后续该表的所有操作。事务一旦申请到MDL锁后,直到事务执行完才会将锁释放

如果某个表上的查询语句频繁,而且客户端有重试机制,也就是说超时后会再起一个新 session 再请求的话,这个库的线程很快就会爆满。

讨论一个问题,如何安全地给小表加字段

首先我们要解决长事务,事务不提交,就会一直占着 MDL 锁。在 MySQL 的 information_schema 库的 innodb_trx 表中,你可以查到当前执行中的事务。如果你要做 DDL 变更的表刚好有长事务在执行,要考虑先暂停 DDL,或者 kill 掉这个长事务。

但考虑一下这个场景。如果要变更的表是一个热点表,虽然数据量不大,但是上面的请求很频繁,而不得不加个字段,该怎么做呢?

这时候 kill 可能未必管用,因为新的请求马上就来了。比较理想的机制是,在 alter table 语句里面设定等待时间,如果在这个指定的等待时间里面能够拿到 MDL 写锁最好,拿不到也不要阻塞后面的业务语句,先放弃。之后开发人员或者 DBA 再通过重试命令重复这个过程。

MariaDB 已经合并了 AliSQL 的这个功能,所以这两个开源分支目前都支持 DDL NOWAIT/WAIT n 这个语法。

1
2
ALTER TABLE tbl_name NOWAIT add column ...
ALTER TABLE tbl_name WAIT N add column ...

备份一般都会在备库上执行,你在用–single-transaction 方法做逻辑备份的过程中,如果主库上的一个小表做了一个 DDL,比如给一个表上加了一列。这时候,从备库上会看到什么现象呢?

假设这个 DDL 是针对表 t1 的, 这里我把备份过程中几个关键的语句列出来:

1
2
3
4
5
6
7
8
9
10
11
12
Q1:SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ;
Q2:START TRANSACTION WITH CONSISTENT SNAPSHOT;
/* other tables */
Q3:SAVEPOINT sp;
/* 时刻 1 */
Q4:show create table `t1`;
/* 时刻 2 */
Q5:SELECT * FROM `t1`;
/* 时刻 3 */
Q6:ROLLBACK TO SAVEPOINT sp;
/* 时刻 4 */
/* other tables */

在备份开始的时候,为了确保 RR(可重复读)隔离级别,再设置一次 RR 隔离级别 (Q1);

启动事务,这里用 WITH CONSISTENT SNAPSHOT 确保这个语句执行完就可以得到一个一致性视图(Q2);

设置一个保存点,这个很重要(Q3);

show create 是为了拿到表结构 (Q4),然后正式导数据 (Q5)

回滚到 SAVEPOINT sp,在这里的作用是释放 t1 的 MDL 锁 (Q6)。

  1. 如果在 Q4 语句执行之前到达,现象:没有影响,备份拿到的是 DDL 后的表结构。
  2. 如果在“时刻 2”到达,则表结构被改过,Q5 执行的时候,报 Table definition has changed, please retry transaction,现象:mysqldump 终止
  3. 如果在“时刻 2”和“时刻 3”之间到达,mysqldump 占着 t1 的 MDL 读锁,binlog 被阻塞,现象:主从延迟,直到 Q6 执行完成。
  4. 从“时刻 4”开始,mysqldump 释放了 MDL 读锁,现象:没有影响,备份拿到的是 DDL 前的表结构。

行锁

MySQL 的行锁是在引擎层由各个引擎自己实现的。但并不是所有的引擎都支持行锁,比如 MyISAM 引擎就不支持行锁。不支持行锁意味着并发控制只能使用表锁。

顾名思义,行锁就是针对数据表中行记录的锁。比如事务 A 更新了一行,而这时候事务 B 也要更新同一行,则必须等事务 A 的操作完成后才能进行更新。

当然,数据库中还有一些没那么一目了然的概念和设计,这些概念如果理解和使用不当,容易导致程序出现非预期行为,比如两阶段锁

两阶段锁

举个例子。假设字段 id 是表 t 的主键。在下面的操作序列中,事务 B 的 update 语句执行时会是什么现象呢?

image-20210429001500100

这个问题的结论取决于事务 A 在执行完两条 update 语句后,持有哪些锁,以及在什么时候释放。

事务 A 持有的两个记录的行锁,都是在 commit 的时候才释放的。

事务 B 的 update 语句会被阻塞,直到事务 A 执行 commit 之后,事务 B 才能继续执行。

在 InnoDB 事务中,行锁是在需要的时候才加上的,但并不是不需要了就立刻释放,而是要等到事务结束时才释放。这个就是两阶段锁协议。

如果事务中需要锁多个行,要把最可能造成锁冲突、最可能影响并发度的锁尽量往后放。

假设负责实现一个电影票在线交易业务,顾客 A 要在影院 B 购买电影票。这个业务需要涉及到以下操作:

  1. 从顾客 A 账户余额中扣除电影票价;
  2. 给影院 B 的账户余额增加这张电影票价;
  3. 记录一条交易日志。

要完成这个交易,需要 update 两条记录,并 insert 一条记录。为了保证交易的原子性,我们要把这三个操作放在一个事务中。

那么,怎样安排这三个语句在事务中的顺序呢?

试想如果同时有另外一个顾客 C 要在影院 B 买票,那么这两个事务冲突的部分就是语句 2 了。因为它们要更新同一个影院账户的余额,需要修改同一行数据。

根据两阶段锁协议,不论你怎样安排语句顺序,所有的操作需要的行锁都是在事务提交的时候才释放的。

所以,如果把语句 2 安排在最后,比如按照 3、1、2 这样的顺序,那么影院账户余额这一行的锁时间就最少。最大程度地减少了事务之间的锁等待,提升了并发度

如果这个影院做活动,可以低价预售一年内所有的电影票,而且这个活动只做一天。于是在活动时间开始的时候,你的 MySQL 就挂了。登上服务器一看,CPU 消耗接近 100%,但整个数据库每秒就执行不到 100 个事务。这是什么原因呢?

这里,就要说到死锁死锁检测了。

死锁和死锁检测

当并发系统中不同线程出现循环资源依赖,涉及的线程都在等待别的线程释放资源时,就会导致这几个线程都进入无限等待的状态,称为死锁。

image-20210429002357084

有两种策略:

  • 一种策略是,直接进入等待,直到超时。这个超时时间可以通过参数innodb_lock_wait_timeout来设置。
  • 另一种策略是,发起死锁检测,发现死锁后,主动回滚死锁链条中的某一个事务,让其他事务得以继续执行。将参数 innodb_deadlock_detect 设置为 on,表示开启这个逻辑。

正常情况下我们还是要采用死锁检测,而且innodb_deadlock_detect的默认值本身就是 on。

主动死锁检测在发生死锁的时候,是能够快速发现并进行处理的,但是它也是有额外负担的。

想象一下这个过程:每当一个事务被锁的时候,就要看看它所依赖的线程有没有被别人锁住,如此循环,最后判断是否出现了循环等待,也就是死锁。

那如果所有事务都要更新同一行的场景呢?

每个新来的被堵住的线程,都要判断会不会由于自己的加入导致了死锁,这是一个时间复杂度是 O(n) 的操作。假设有 1000 个并发线程要同时更新同一行,那么死锁检测操作就是 100 万这个量级的。虽然最终检测的结果是没有死锁,但是这期间要消耗大量的 CPU 资源。因此,你就会看到 CPU 利用率很高,但是每秒却执行不了几个事务。

怎么解决由这种热点行更新导致的性能问题呢?问题的症结在于,死锁检测要耗费大量的 CPU 资源。

一种头痛医头的方法,就是能确保这个业务一定不会出现死锁,可以临时把死锁检测关掉。但是这种操作本身带有一定的风险,因为业务设计的时候一般不会把死锁当做一个严重错误,毕竟出现死锁了,就回滚,然后通过业务重试一般就没问题了,这是业务无损的。而关掉死锁检测意味着可能会出现大量的超时,这是业务有损的。

另一个思路是控制并发度。这个并发控制要做在数据库服务端。如果你有中间件,可以考虑在中间件实现;如果你的团队有能修改 MySQL 源码的人,也可以做在 MySQL 里面。基本思路就是,对于相同行的更新,在进入引擎之前排队。这样在 InnoDB 内部就不会有大量的死锁检测工作了。

如果团队里暂时没有数据库方面的专家,不能实现这样的方案,能不能从设计上优化这个问题呢?

可以考虑通过将一行改成逻辑上的多行来减少锁冲突。还是以影院账户为例,可以考虑放在多条记录上,比如 10 个记录,影院的账户总额等于这 10 个记录的值的总和。这样每次要给影院账户加金额的时候,随机选其中一条记录来加。这样每次冲突概率变成原来的 1/10,可以减少锁等待个数,也就减少了死锁检测的 CPU 消耗。

Next-Key Lock

行锁有写锁X和读锁S两种,实际上行锁有3种实现算法,Next-Key Lock是其中之一。

第一种叫做Record Lock,字面意思,行记录的锁,实际上指的是对索引记录的锁定。

比如执行语句select * from user where age=10 for update,将会锁住user表所有age=10的行记录,所有对age=10的记录的操作都会被阻塞。

第二种都比较熟悉,叫做Gap Lock,也就是间隙锁,它用于锁定的索引之间的间隙,但是不会包含记录本身。

比如语句select * from user where age>1 and age<10 for update,将会锁住age在(1,10)的范围区间,此时其他事务对该区间的操作都会被阻塞。

间隙锁是可重复读RR隔离级别下特有的,

另外一种情况适用于主键索引或者唯一索引的等值查询条件,比如select * from user where id=1id是主键索引,这样只使用Record Lock就可以了,因为能唯一锁定一条记录,所以没有必要再加间隙锁了,这是锁降级的过程。

而第三种Next-Key Lock实际上就是相当于Record Lock+Gap Lock的组合。比如索引有10,20,30几个值,那么被锁住的区间可能会是(-∞,10],(10,20],(20,30],(30,+∞)。

要想解决幻读,就需要加锁(X锁,Gap锁等),比如for update,全部改成当前读直到事务结束,自然没有问题。

锁的范围

Donate comment here.
Powered By Valine
v1.5.2